
DNSSEC

Simon Mayoye
simon.mayoye@icann.org

May 2024 - KENOG

Understanding DNSSEC…

Introduction to DNSSEC

| 3

www.majorbank.se=?

Get page
webserverw
ww @
1.2.3.4

Username / Password
Account Data

DNS Hierarchy

se com

root

majorbank.se

www.majorbank.se

DNS
Resolver

www.majorbank.se = 1.2.3.4
DNS
Server1.2.3.4

Login page

ISP Majorbank (Registrant)

The Internet’s Phone Book - Domain Name System (DNS)

| 4

What Is DNSSEC?

◉ DNSSEC is a protocol that is currently
being deployed to secure the DNS.

◉ DNSSEC adds security to the DNS by
incorporating public key cryptography into
the DNS hierarchy, resulting in a single,
open, global Public Key Infrastructure (PKI)
for domain names.

◉ DNSSEC is the result of over two decade
of community-based, open standards
development.

◉ Specified in RFCs 4033, 4034, 4035 and
5155

DNSSEC stands for Domain Name System (DNS) Security Extensions.

| 5

Timeline For Securing DNS With DNSSEC

◉ 1993: Discussion of secure DNS begins
◉ 1994: First draft of possible standard published
◉ 1997: RFC 2065 published

DNSSEC is an IETF standard
◉ 1999: RFC 2535 published

DNSSEC standard is revised
◉ 2005: Total rewrite of standards published

RFCs 4033, 4034 and 4035
◉ July 2010: Root zone signed
◉ March 2011: .com zone signed
◉ 2012-: New gTLDs required to be signed with DNSSEC
◉ 2018: Root zone KSK rollover
◉ 2023: new KSK generated (root KSK ceremony 49)

| 6

What DNSSEC Does

◉ DNSSEC uses public-key cryptography and digital signatures to provide:

Data Origin Authenticity
• “Did this response really come from the example.com zone?”

Data Integrity
• “Did an attacker (e.g., a man in the middle) modify the data in this

response since the data was originally signed?”

◉ DNSSEC offers protection against spoofing of DNS data

| 7

What DNSSEC Doesn’t Do

◉ DNSSEC doesn’t provide any confidentiality for DNS data:
No encryption
Man in the middle-attack
DNS over HTTPS (DoH- RFC 8484) and DNS over TLS
(DoT – RFC 7858) – more suited

◉ DNSSEC doesn’t address attacks against DNS software:
DDoS
BCP38

| 8

Protection by DNSSEC

STUB
resolver

caching
resolver

(recursive)

Primary

SLAVESSecondary

zone
file

(text,
DB)

dynamic
updates

man in the
middle

cache
poisoning

modified
data

Zone
Transfer

spoofing
master

(routing/DoS)
spoofed
updates

corrupted
data

PROTECTION BY DNSSEC

A
TT

A
C

K
VE

C
TO

R
S

(TSIG)

D
A

TA

| 9

DNS resolution process with DNSSEC

Recursive Name Server

Name
Server Resolver

Stub
Resolver

Authoritative
Name Server

Authoritative
Name Server

Authoritative
Name Server

API call

DNS query
and response

+ AD

DNS queries + DO
and responses + RRSIG

Cache
DNS queries +

DO
and responses

+ RRSIG

DNS queries + DO
and responses + RRSIG

DNSSEC
validation

| 10

The Kashpureff Attack

| 11

The Amit Klein Findings

| 12

Classic DNS Cache Poisoning

| 13

Kaminsky NS Poisoning

| 14

Who can implement DNSSEC ?

◉ Enterprises – Sign their zones (NS) and validate DNS lookups (resolvers)

◉ TLD Operators – Sign the TLD

◉ Domain Name holders – Sign their zones

◉ Internet Service Providers – validate DNS lookups

◉ Hosting Provider – offer signing services to customers

◉ Registrars – accept DNSSEC records (e.g., DS)

DNSSEC Signing
& a few Cryptography Basics …

| 16

Cryptographic Basics

To provide this, we use

⦿ Asymmetric cryptography
⦿ Digital signatures

| 17

Private and Public Keys

Priv
ate

Pub
lic

Priv
ate

Pub
lic

Text

Text

Text

Text

| 18

Hash Function

◉ A cryptographic hash algorithm produces a fixed-size output (fingerprint) called a
hash or digest for any size input.

Hash
Functio

ntext � � fixed-size output digest

Hash bc713027e780c5d0a8d452b3df9f58dcOne ring to rule them all

b18d5f6790d95dc29235f3bd2bbf00d7HashOne ping to rule them all

Example of MD5 digests (an MD5 hash is created by taking a
string of an any length and encoding it into a 128-bit fingerprint):

71532c21ac6551759758aaddba2c557aHashOne ring

| 19

Digital Signature

◉ We may combine hash with private and public key, to obtain a digital
signature of any text

Hashing + Encrypt = Digital Signature

Text

Priv
ate

| 20

Validate the digital signature

Pub
lic

(or with private key)

Use normal clear text, signature and public keys to do two ways verification and compare both

hashes.

= ?

So, DNSSEC !

Fasten your seatbelts …

| 22

Discussion: what are the RRs for DNSSEC ?

| 23

New Resource Records

RRSIG

DNSKEY

DS

Signed Resource Records

Public Key

Delegation Signer
(Chain of Trust pointer)

NSEC Next Secure (Proof of Non-existence)

| 24

Signing DNS Data

◉ In DNSSEC, each zone has a public/private key pair

◉ Data in the zone is signed with the private key
Signing the data is usually de-coupled from serving the data
The design allows data to be signed ahead of time rather than “on the fly” for each
response

◉ Important: In DNSSEC, DNS data is signed, not DNS messages
Signing messages is called transaction security
A separate protocol called TSIG handles that

| 25

Two Keys: ZSK and KSK

• Key Signing Key (KSK)
– Pointed to by parent zone in the form of DS (Delegation Signer). Also called

Secure Entry Point.
– Used to sign the Zone Signing Key
– Flags: 257

• Zone Signing Key (ZSK)
– Signed by the KSK
– Used to sign the zone data RRsets
– Flags: 256

• This decoupling allows for independent updating of the ZSK without
having to update the KSK, and involve the parents (i.e. less
administrative interaction)

| 26

Zone Key Pairs

◉ The zone’s public keys are published in the zone in a specific record (DNSKEY)

◉ The zone’s private keys are kept safe:
The amount of protection required depends on how the zone owner evaluate the risks
involved in case the private key is disclosed or compromised.

◉ Options for protecting a zone’s private key:
Stored on-line in some encrypted form, only decrypted when needed for signing data
• The minimum.

Stored offline also in some encrypted form
• Offers more protection.

Stored in a hardware security module (HSM)
• Offers the most protection but overkill (may also be costly) for many applications.

| 27

ZSK

RRSet

RR
(AAAA)

Each zone in DNSSEC has a Zone Signing Key pair (ZSK)

Recall: An RRset is the set of all Resource Records of a given record type for a given name.

RR
(AAAA)RR
(AAAA)

ZSK Private Key

ZSK Public Key

ZSK pair

The zone operator creates digital signatures for each RRset using the private ZSK and then
stores them in their name server as RRSIG records.

RRSIG

So this is basically me signing my records to proof they’re mine

Hash

| 28

ZSK

Also, zone operators must give their public ZSK for others to verify the signature. So they publish the
public ZSK in a DNSKEY record on their name servers.

ZSK Private Key

ZSK Public Key

ZSK pair

So this is basically me advertising my public key for others to verify

DNSKEY

| 29

ZSK

Now resolvers should be able to verify that signature…

RRSet

RR
(AAAA)RR
(AAAA)RR
(AAAA)

The resolver pulls DNSKEY record (containing public ZSK) from name server and uses it in joint
with RRSIG and RRset to validate the signature (RRSIG).

RRSIG

So this is basically the resolver confirming RRSet is mine
DNSKEY

Validating DNS Resolver

RRSet

RR
(AAAA)RR
(AAAA)RR
(AAAA)

Verified
!

RRSet

RR
(AAAA)RR

(AAAA)RR
(AAAA)

RRSIG

Hash

| 30

KSK

RRSet

How to trust them? (or in other words: how to validate the public ZSK?)
... Then, all reduces to resolvers trusting the public ZSK they got in the DNSKEY record !

KSK Private Key

KSK Public Key

KSK pair

To validate the public ZSK, DNSSEC name servers have another pair called Key Signing Key (KSK).
This KSK works the same we explaining for ZSK by signing the public ZSK with the private KSK (private
KSK encrypts DNSKEY containing both public ZSK and public KSK) and storing that signature in another
RRSIG record.

RRSIG

So this is basically me signing my records to proof they’re mine

Hash

DNSKEY
(Public SZK)

DNSKEY
(Public KZK)

| 31

KSK

Also, zone operators must give their public KSK for others to verify the signature. So they publish the
public KSK in another DNSKEY record on their name servers.

KSK Private Key

KSK Public Key

KSK pair

So this is basically me advertising my public key for others to verify

DNSKEY

| 32

KSK

Now resolvers should be able to verify that KSK signature…

The resolver pulls DNSKEY record (containing public KSK) from name server and uses it in joint
with RRSIG and RRset to validate the signature (RRSIG).

RRSIG

So this is the resolver confirming public ZSK is mine

DNSKEY

Validating DNS Resolver

Verified
!

RRSIG

Hash

RRSet

DNSKEY
(Public SZK)

DNSKEY
(Public KZK)

RRSet

DNSKEY
(Public SZK)

DNSKEY
(Public KZK)

RRSet

DNSKEY
(Public SZK)

DNSKEY
(Public KZK)

| 33

DS

... Pretty much fun so far… but now we ended up with two key pairs instead of one ! Why?
So far, we have established trust within our zone.

Changing ZSK is easier than changing KSK; also this allows for having smaller ZSK (compared
with stronger and bigger KSK) and thus reducing amount of data exchanged among servers (in
the responses containing the keys and signatures for each RRset).
... Also, we will have to find a way to relate a zone with its parent to create the so called “Chain of Trust” and finally
have one key to rule them all (yep, that’s me quoting Lord of the Rings).

To allow for the chain of trust (that is transferring trust from parent to child) DNS uses a new
record called Delegation Signer (DS).

DNSKEY
(Public KSK)

Hash

Transfer

Child Zone

DNSKEY
(Public KSK)

Hashed

Parent Zone

DS record

| 34

The Root

TLD

SLD
data example.com. KEY ZSK

example.com. KEY KSK

example.com. DS
com. KEY ZSK
com. KEY KSK

com. DS
root KEY ZSK
root KEY KSK

www.example.com. DATA

Signing Chain

| 35

Chain of Trust
Finally, how do we trust DS record?

Well, we just sign DS record like we did with other RRsets, creating a
corresponding RRSIG for the DS record in the parent.

We repeat the validation process and get to the parents public KSK...
And again must go to that parent’s DS record to verify… on and on
up to the DNS root.

Eventually, we get to the root and there's nothing up there (sadly no
parent)… and so we must come with a solution to create a trust
anchor for the root, a “one key to rule them all” (sorry, can’t resist
quoting LOTR again)… and here it comes a solution implemented
since 2010 called:

 The Root Signing Ceremony

… to be continued …

Root
zone

Publi
c
key

.com
zone

example.com
zone

Privat
e

key

sig
n

sig
n

A records for
www.example.c

om

sig
n

Root zone
KSK

More detail on DNSSEC RRs

| 37

The DNSKEY Record

◉ Fields:
256 or 257, the 16-bit flags field
• Bit 7 is set to indicate a DNSSEC zone key
• Bit 0 is set to indicate a key-signing key (KSK)

3, the protocol octet
• Will always be 3 to signify DNSSEC

8, the algorithm number (RSA/SHA-256)
And the public key itself, encoded in base64
• 2048-bit RSA keys in this example

 example.com. 600 DNSKEY 256 3 8 (
 AwEAAdQdbS3W+EoxaGv21gOGGSUFHB6PNVNC
 PecSLswQ7eKTVtPEYRd+VNDDRZShSOSNFDZq
 eLcO66EO7N8E8udVxGMpBmk59V1YLGAOTIqW
 J5132IGA9JgjSabtYtKU4kMbXqNKM8JrtlJd
 sFF/nixVZzusEl1XZ1u38wozEu0uk39jo5ki
 cju9o5UL2J+cXo7thBY8VRXibmCiz9FWB0G5
 YH/YBgWdI8aFnojoPHbaMUr3G7MObahqCxzv
 41EWPa9AsL97vKil71FD+Jt51Kzq6LcIK55F
 P3I/oUQXGssJ0tINNnR7IVb8uwfo29w5p0DW
 JG930HAltYPDav785Z6Gg8M=
) ; ZSK; alg = RSASHA256; key id = 47265

 600 DNSKEY 257 3 8 (
 AwEAAbcTEHTvHv7TzxbeVhFSd9pCivORG73p
 POTsT4WLB7FKtmLwJTXwaKS1bHcY+hm9TL8i
 /H1LcecDEZjm9614I8fk61KwrH9Z7K0ibFrb
 sBirNqXgS43IfRXU1ut4W8BHnOnrKtny2Djd
 KtV46q9nFbzC4WKT/FT0CBGjcc8J5I8SYepO
 J/R2jwFBHdvwNrVKz3tT0ndO0ceuLJOfWyfL
 O/X2GQ6RwWHojjl9V0zpgHockIPtQ+EgSIqx
 unD1Rv07Ezkd/5tlPBJIXjADL9IstSsaol8S
 fgrtyLggM83sWzPTvnvqGrgQPmqKrnDsLugo
 UPAYIYmgZ7TF2al5BbtZ4T0=
) ; KSK; alg = RSASHA256; key id = 21700

| 38

The RRSIG Record

◉ Fields:
A, the type of records signed
8, the algorithm number (RSA/SHA-256)
3, the number of labels in the signed name
600, the original time to live on the records
signed
20200517225528, when the signature expires
20200417225528, when the records were signed
47265, the (ZSK) key tag/key ID number
example.com, the signer’s name (the zone name)
And the digital signature itself, in base64

www.example.com. 600 A 192.0.2.1
 600 A 192.0.2.2
 600 RRSIG A 8 3 600 (
 20200517225528 20200417225528 47265 example.com.
 0Od1A6bCmBICLCqQqTpKRFeZrm4Lr/NqXOmg
 KuM22cjllVLxpdgmwLiU7pTDo2FmOvaNPkgz
 a2jhTgSOs6Yj6N0XnkV1e0u2n157YMg26xGv
 GqJuPgLKql4KxMjngtdwNB5INQasohALjgAo
 uTbu9mQQLdyLrkV54P5MUE7lOTFaliWEqW1e
 Z/vdaYMc2yKb8CmOQwKxsoWlgnQTYO+lkLuZ
 GGffjWH96p6mDbyl5UNA4umSDEqbVKs29Ldv
 H7XGOEfkmkze4jSyVUMh57m1DV4ZVLuqx8bQ
 YH9zTJPSqvizlSNkuVqssFwknCLwwSOb9FhS
 Po9ylhJ9iRPdT34frg==)

| 39

The DS Record

◉ DS record’s fields:
21700, the key tag/key ID number
(of the example.com KSK)
8, the algorithm number (RSA/SHA-256)
The DS digest type: 1 is SHA-1, 2 is SHA-256
And the digest, in hexidecimal

; This is an excerpt of the .com zone file
example.com. DS 21700 8 1 (
 43839D3767944EDD08BA5F342A1F0526FDE1
 F2E0)
 DS 21700 8 2 (
 7C600DA93B9D0A6EAFC8DFA9C757D1CC59CD
 6281EFBAD75DA30FC5B1A121EDC4)
 RRSIG DS 8 2 600 (
 20180518010942 20180418010942 22089 com.
 Lpcx20t+2K3svnR4/KAu7pUtBM90upIeUxF6
 k7USsg/usvLY2MXmUSTZo00jOD+5CNPMYiLq
 v/KwDjsxCfjZd25nWy0HLaNCF4kq/Hx7IkA3
 XxF7c/pjYHSIgGKQ5JdD1x+ns9XNeSxIy7Ic
 94Gp61SRFd87Mp6KNCbED3BGzmxMTHn4Yql2
 +TEfvmSHa4shxjtbZOtIFSNnzDKPTwcmtjHK
 m5WccKUXFrdEgUg03TsqJBDWnlzga7NdNITA
 tWgUKxALyycNGjla4shk6t4mTEpzFe631k2Q
 0vJamA+MfLZSz6ojT3SU7LyJrMO+RgaslqeE
 i4UWCs6+JOnLAnFKXQ==)

| 40

Proving Something Doesn’t Exist

◉ Two kinds of “negative errors” in DNS when the queried RRset doesn’t exist:
Name Error (NXDOMAIN)
“No such data” (NOERROR/0)

◉ How do you prove cryptographically that an RRset doesn’t exist?

◉ Could sign negative responses “on the fly”
But the design of DNSSEC doesn’t require the private key to be available when serving the
zone

◉ Or sign something ahead of time: the NSEC record

| 41

The NSEC Record

◉ The NSEC record spans a gap between two domain names in a zone

◉ The NSEC record…
Resides at a given domain name
Specifies what types exist at the name
Points to the next name in the zone

◉ Notion of a “next” name implies a canonical order, which is introduced by DNSSEC

◉ Domain names in a zone are sorted by:
Shifting all characters to lowercase
Sorting non-existing bytes ahead of “0”
Sorting lexicographically from the highest-level label to the lowest-level

| 42

A Zone With NSEC Records Added
example.com. SOA ns.example.com.
hostmaster.example.com.
 2018041700 3600 600 86400 600
example.com. NS ns.example.com.
example.com. A 10.0.0.1
example.com. MX 0 mail.example.com.
example.com. NSEC east.example.com. A NS SOA MX NSEC
east.example.com. NS ns.east.example.com.
east.example.com. NSEC ns.east.example.com. NS NSEC
ns.east.example.com. A 10.0.0.5
ns.east.example.com. NSEC ftp.example.com. A NSEC
ftp.example.com. CNAME www.example.com.
ftp.example.com. NSEC mail.example.com. CNAME NSEC
mail.example.com. A 10.0.0.2
mail.example.com. NSEC ns.example.com. A NSEC
ns.example.com. A 10.0.0.1
ns.example.com. NSEC www.example.com. A NSEC
west.example.com. NS ns.west.example.com.
west.example.com. NSEC ns.west.example.com. NS NSEC
ns.west.example.com. A 10.0.0.4
ns.west.example.com. NSEC A NSEC
www.example.com. A 10.0.0.3
www.example.com. NSEC example.com. A NSEC

| 43

NSEC 3

◉ NSEC3 is an alternative to NSEC providing:
Non-enumerability
Opt-out

◉ Why the name NSEC3?
The name reflects the number of people who actually understand it
That was a joke
But NSEC3 is indeed very complicated

| 44

Non-Enumerability

◉ Stops zone enumeration via “zone walking” the NSEC chain

◉ Instead NSEC3 chain is a hash of names

◉ Example:
Zone: alpha.example, bravo.example, charlie.example
NSEC chain:
• alpha.example → bravo.example → charlie.example

NSEC3 chain:
• HASH(bravo).example → HASH(alpha).example → HASH(charlie).example
• ACJENFKS.example → DGJRPFKDM.example → QVNRJVMD.example

(Note: hash names are examples only and shorter than an actual NSEC3 hash)

| 45

Opt-Out

◉ Standard DNSSEC:
Every name in a zone has an NSEC
• Including delegations (NS RRsets)

◉ Opt-Out DNSSEC:
Only secure delegations have an NSEC
• Delegations to zones that are signed
• i.e., delegations that also have a DS RRset

◉ Much better for large zones like .com
Many names, but few secure delegations
Much shorter NSEC3 chain than if there were an NSEC chain
Fewer signatures
Smaller signed zone

| 46

Unsigned Zone Example: example.com

example.com. SOA <SOA stuff>
example.com. NS ns1.example.com.
example.com. NS ns2.example.com.
example.com. A 192.0.2.1
example.com. MX 10
mail.example.com.
mail.example.com. A 192.0.2.2
www.example.com. A 192.0.1.1
www.example.com. A 192.0.1.2

| 47

Signed Zone Example: example.com
example.com. SOA <SOA stuff>
example.com. RRSIG SOA <RRSIG stuff>
example.com. NS ns1.example.com.
example.com. NS ns2.example.com.
example.com. RRSIG NS <RRSIG stuff>
example.com. A 192.0.2.1
example.com. RRSIG A <RRSIG stuff>
example.com. MX 10 mail.example.com.
example.com. RRSIG MX <RRSIG stuff>
example.com. DNSKEY <Key that signs the example.com DNSKEY RRset>
; KSK
example.com. DNSKEY <Key that signs the rest of the example.com
zone> ; ZSK
example.com. RRSIG DNSKEY <RRSIG stuff>
example.com. NSEC mail.example.com. SOA NS A MX DNSKEY RRSIG NSEC
example.com. RRSIG NSEC <RRSIG stuff>
mail.example.com. A 192.0.2.2
mail.example.com. RRSIG A <RRSIG stuff>
mail.example.com. NSEC www.example.com. A RRSIG NSEC
mail.example.com. RRSIG NSEC <RRSIG stuff>
www.example.com. A 192.0.1.1
www.example.com. A 192.0.1.2
www.example.com. RRSIG A <RRSIG stuff>
www.example.com. NSEC example.com. A RRSIG NSEC
www.example.com. RRSIG NSEC <RRSIG stuff>

| 48

DNSSEC signing high overview

1. Working DNS infrastructure (with best operational practices).
2. Signing architecture: in-line signing, bump in the wire, etc.
3. Signing mode: manual, semi-automated, automated, etc.
4. Choose parameters: lifetimes (keys, signatures, etc.), algorithms, key sizes, etc.
5. Generate keys
6. Sign and Test
7. Write procedures: normal key rollovers, emergency, keys management, DPS, etc.
8. Test and document
9. Share DS with parent
10. Monitor
11. Publish DPS
12. Plan rollover: ZSK, KSK (manual, semi-automated, automated).
13. DNSSEC deployment guidebook: OCTO 029 ?

| 49

OCTO-029: a guidebook for DNSSEC deployment

◉ The guidebook aims to assist ccTLD registry operators in understanding
DNSSEC deployment at a TLD.

◉ Target audience:
TLD registry managers, staff, registrars, registrants
Operator who administers zones
Anyone willing to have an overview of how to deploy DNSSEC on a ccTLD.
Either you are already DNSSEC signed or not, you can glean insights on
current DNSSEC operational best practices from this guidebook.

◉ DNSSEC deployment checklist: a list of adjustable action items that aims to
simplify your journey into DNSSEC deployment.

◉ Download the guidedebook at : https://www.icann.org/en/system/files/files/octo-
029-12nov21-en.pdf

https://www.icann.org/en/system/files/files/octo-029-12nov21-en.pdf
https://www.icann.org/en/system/files/files/octo-029-12nov21-en.pdf

| 50

Time for practice: play with DNSSEC resource records

◉ CLI : dig

◉ Web : https://www.digwebinterface.com/

https://www.digwebinterface.com/

DNSSEC Validation

DNSSEC enabled - resolvers in action

| 52

DNSSEC Validation

◉ Protects your customers/users from being redirected to a wrong/fake destination (web site,
online service, …)

◉ Process of checking the signatures on DNSSEC data that help to verify authenticity and
integrity of signed zones.

◉ Signature data (RRSIG) come alongside with the DNS response for signed domains.
◉ Validation can occur in applications, stub resolvers or recursive resolvers. Most validation

today occurs in recursive resolvers.
◉ Trust Anchor: To perform DNSSEC validation, you have to trust somebody (some zone’s

key). Root Zone KSK is the most important trust Anchor on the Internet. You can
view root key signing ceremony on YouTube.

◉ What happens when validation fails?
The recursive resolver protects the user by sending a “SERVFAIL” error response.

| 53

DNS resolution process with DNSSEC

Recursive Name Server

Name
Server Resolver

Stub
Resolver

Authoritative
Name Server

Authoritative
Name Server

Authoritative
Name Server

API call

DNS query
and response

+ AD

DNS queries + DO
and responses + RRSIG

Cache
DNS queries +

DO
and responses

+ RRSIG

DNS queries + DO
and responses + RRSIG

DNSSEC
validation

| 54

Chain of Trust
Finally, how do we trust DS record?

Well, we just sign DS record like we did with other RRsets, creating a
corresponding RRSIG for the DS record in the parent.

We repeat the validation process and get to the parents public KSK...
And again must go to that parent’s DS record to verify… on and on
up to the DNS root.

Eventually, we get to the root and there's nothing up there (sadly no
parent)… and so we must come with a solution to create a trust
anchor for the root, a “one key to rule them all” (sorry, can’t resist
quoting LOTR again)… and here it comes a solution implemented
since 2010 called:

 The Root Signing Ceremony

Root
zone

Publi
c
key

.com
zone

example.com
zone

Privat
e

key

sig
n

sig
n

A records for
www.example.c

om

sig
n

Root zone
KSK

| 55

◉ System memory: DNSSEC generates larger response sets and therefore takes up more memory
space. It is good practice to have more detailed monitoring of memory occupation

◉ CPU: DNS response validations usually lead to increased CPU usage (without an immediate need
to change the machine).

◉ Network interfaces: Although DNSSEC increases the total amount of DNS traffic, it is unlikely that
you will need to update the network interfaces on the name server. It is also a good practice to do a
detailed monitoring of the traffic increase due to the activation of the validation.

◉ Large UDP packets: Some network equipment, such as firewalls, can make assumptions about
the size of UDP DNS packets and incorrectly reject DNS traffic that appears "too large". You should
check EDNS configuration.

◉ Check network connectivity over TCP port 53: this may mean updating firewall or ACL policies
on routers.

Some hardware & network considerations

| 56

◉ Make sure the Network Time Protocol (NTP) is working properly: DNSSEC make use of real clock
time and date when validating the signed RRs (RRSIG) so if the resolver date/time is wrong, it won’t
verify the signatures correctly and may lead to attack vectors exploiting a non sync resolver. Good
practice is to have the resolver use a trusted NTP service and make sure it always has network
connectivity to it and is sync.

Some hardware & network considerations (2)

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;icann.org. IN A

;; ANSWER SECTION:
icann.org. 241 IN A 192.0.43.7
icann.org. 241 IN RRSIG A 7 2 600 (
20221125002853 20221103185759 4629 icann.org.
Q8ueFJ0AahM+NN/VJeVv2TQrJyAqNdnHLxtA3zS6BRky
Y2C8hXYqkmDgyFGfDQQujMhPFJQ3Lyq0OuBx1G8T1LY/
EtZ/tosUp4NEWvKeV132scGaXCRgXqugfcFVN6wKbwyi
bZb0J4q8Ng2TcK7+7zEvH7DVoZ7BPR51zPzPPpk=)

Expiration time

Inception time

Enabling DNSSEC Validation

| 58

What do you need to enable DNSSEC validation ?

◉ If you run your own DNS recursive resolvers (open source or commercial) within your
network, activate DNSSEC validation is usually simple and does not require a new
investment. Most of the softwares already have it embedded, you just need to perform
some verification before activating in the configuration. Those verifications are :

hardware resources utilization (memory, CPU) and network bandwidth utilization.

server clock synchronization: NTP

current trust anchors in the system

EDNS

TCP port 53 should be open

Explicitly exclude forward-zones (if you have any)

◉ If you are using external recursive resolvers, make sure that they are DNSSEC validating.
If not, you can refer to their administrators and suggest them to activate it.

| 59

Enable DNSSEC Validation in BIND 9.11+

On /etc/bind/named.conf.options :

dnssec-validation auto

| 60

Enable DNSSEC Validation in Unbound 1.7+

1) Download root-key trust anchor:
 unbound-anchor

 2) On /etc/unbound/unbound.conf.d/root-auto-trust-anchor-file.conf :

 Uncomment the line:
 # auto-trust-anchor-file: "/var/lib/unbound/root.key"

 To:
 auto-trust-anchor-file: "/var/lib/unbound/root.key”

3) Restart Unbound

| 61

Enable DNSSEC Validation in Infoblox

◉ Infoblox DNSSEC deployment Guide (signing and validation):
https://www.infoblox.com/wp-content/uploads/infoblox-deployment-guide-
dnssec.pdf

https://www.infoblox.com/wp-content/uploads/infoblox-deployment-guide-dnssec.pdf
https://www.infoblox.com/wp-content/uploads/infoblox-deployment-guide-dnssec.pdf

| 62

Enable DNSSEC Validation in Infoblox

| 63

Enable DNSSEC Validation in Infoblox

◉ Ascertain Root Key (Trust Anchor):

AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjFFVQUTf6v58fLjwBd0YI0
EzrAcQqBGC
zh/RStIoO8g0NfnfL2MTJRkxoXbfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efuc
p2gaDX6RS6
CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpzW5hOA2hzCTMjJPJ8LbqF6dsV6
DoBQzgul0s
GIcGOYl7OyQdXfZ57relSQageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnu
lqQxA+Uk1ihz 0=

◉ Add this key under Trust Anchors for “.” and set the algorithm to 8

| 64

Test your Resolver is Validating

- Do you get the ad bit?

| 65

State of DNSSEC Validation

◉ Most validation today occurs in recursive resolvers

◉ 1/3 of DNS responses are validated according to APNIC Labs*
Many resolvers still not validate DNS answers

⚪ . . And not enough domains are signed

◉ Check DNSSEC validation status in your country:
https://stats.labs.apnic.net/dnssec/

https://stats.labs.apnic.net/dnssec/

| 66

Time for practice !

1. Configure your resolvers to be validating resolvers: lab DNSSEC
validation

2. Test your validating resolvers with signed and non signed domains.

3. Sign your zone: lab zone signing and lab send DS to root zone.

4. Once DS is publish in root zone, confirm you get the AD flag for your DS
and your zone records using your internal resolvers.

Lab Details

5. https://kenog.te-labs.training/grpX where X is your group number.

6. https://github.com/smayoye/training

https://kenog.te-labs.training/grpX

Visit us at icann.org

| 67

Engage with ICANN – Thank You and Questions

